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NUMERICAL CALCULATION O F  SUPERSONIC FLOWS O F  A 

PERFECT GAS OVER BODIES OF XEVOLUTION 

AT SMALL ANGLES O F  YAW 

By John V.  Rakich 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

A l inear ized cha rac t e r i s t i c s  method i s  used t o  obtain the  f i r s t -order  
e f f ec t s  of yaw i n  the  supersonic port ion of t he  flow over bodies of revolu- 
t i o n .  The f i r s t -order  perturbation equations a re  derived i n  t e r m s  of pressure 
and flow-deflection angles as dependent var iables  and are incorporated i n t o  
an ex is t ing  method of charac te r i s t ics  computer program fo r  axisymnetric f l o w .  
Some example flows obtained from the  resu l t ing  program a re  presented fo r  t he  
purpose of es tabl ishing the  accuracy and app l i cab i l i t y  of t h e  method. 

The method y ie lds  r e s u l t s  which a re  i n  agreement with Kopal's exact solu- 
t i ons  f o r  cone f l o w ,  and surface pressures for  blunt-nosed cones tend t o  t he  
pointed cone values at a large distance from the  nose. The f i r s t -o rde r  per- 
turbat ion f i e l d  f o r  a sphere-cone i s  compared with published results obtained 
by bas ica l ly  the  same method; there  i s  a general  agreement of t he  r e su l t s ,  but 
some differences a re  noted. For an ogive of fineness r a t i o  3, comparison with 
experiment and shock-expansion theor ies  indicates  app l i cab i l i t y  fo r  yaw angles 
up t o  about 5 O .  In  the  case of spherical ly  blunted 15' and 30' cones, t he  
present theory agrees w e l l  with experiment fo r  yaw angles up t o  2O and 5 O ,  
respect ively.  Estimates based on pointed cone theor ies  indicate  the  range of 
angles t o  which the  present l i nea r  approximation can be applied.  

INTRODUCTION 

The subsonic region near t he  stagnation point of a blunt body has only 
recent ly ,  and with the  help of modern computers, been accurately determined 
(see,  e .g., r e f s .  1 and 2 ) .  
only s l i gh t ly  i n t o  the  region of supersonic flow and it has been necessary t o  
use the  method of charac te r i s t ics  i n  order t o  continue the  solutions i n t o  the 
supersonic region. This matching of t he  two methods of solut ion has been 
achieved for  unyawed bodies of revolution ( r e f .  3 ) .  I n  the  present paper, t he  
method of charac te r i s t ics  i s  used t o  continue t h e  blunt  body solut ion i n t o  the  
supersonic region fo r  t he  case of a yawed body of revolution. However, t o  
avoid the  complexity of a three-dimensional cha rac t e r i s t i c s  approach, well- 
es tabl ished perturbation techniques a re  used ( r e f s .  4 t o  13 ) .  The procedure 
of coupling the  method of cha rac t e r i s t i c s  with t h e  per turbat ion technique i s  

These "blunt body" solut ions typ ica l ly  extend 



ca l led  a l inear ized  cha rac t e r i s t i c s  method ( ref .  8 ) ,  
adequately covered i n  the  referenced works and w i l l  not be repeated herein.  
However, t he  present equations and procedur'es d i f f e r  i n  some d e t a i l s  from 
those of t he  references.  Therefore the  equations used i n  the  computer program 
w i l l  be derived and some aspects  of t h e  program described. Results f o r  a few 
selected bodies w i l l  be presented and compared with experiment and with the  
results of other theor ies .  

I t s  theo re t i ca l  basis i s  

Subsequent t o  the  i n i t i a t i o n  of t he  present study, reference 14 presented 
r e s u l t s  of calculat ions of t h e  supersonic flow over a spherical ly  blunted cone 
a t  small yaw. These r e s u l t s  were obtained by bas i ca l ly  the  same method used 
i n  the  present study (i .e . ,  l inear ized  cha rac t e r i s t i c s  method). Some of the  
r e s u l t s  of reference 1 4  a re  reproduced i n  the  present paper f o r  comparison, 
and some differences with present r e s u l t s  and techniques a re  discussed. 

SYMBOLS 

a 

cv 

CN 

CP 

d 

f 

h 

K 

M 

P 

speed of sound 

spec i f ic  heat at constant pressure 

spec i f ic  heat a t  constant volume 

normal-f orce coef f ic ien t  

pres sure coef f ic ien t  

body diameter 

L fineness r a t i o ,  - 
d 

enthalpy 

constant i n  body boundary condition 

hypersonic s imi l a r i t y  parameters 

body length 

Mach number 

pres  sure 
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r a d i a l  coordinate, cy l ind r i ca l  coordinate system r 

R r a d i a l  distance t o  shock wave 

Rb 

S 

nose radius  f o r  blunt-nosed body 

entropy 

veloci ty  component i n  x d i rec t ion  U 

veloci ty  component i n  r d i rec t ion  

sca la r  magnitude of veloci ty  vector ( V  = Vs) 
--L 3 

v 

V 

v A veloci ty  vector 

veloci ty  component i n  circumferential  d i rec t ion  (crossflow 
ve loc  it y ) 

W 

- 
X distance t o  center of pressure 

cy l indr ica l  coordinates 

rectangular coordinates 

streamline coordinates (see f i g .  1) 

uni t  vectors,  rectangular coordinates 

uni t  vectors?  cy l ind r i ca l  coordinates 

uni t  vectors ,  streamline coordinates 

shock- oriented uni t  vectors 

a angle of yaw, radians 

JM2 - 1 

Y spec i f  ic-heat rat  i o  

left-running cha rac t e r i s t i c  coordinate 

flow angle measured from x ax is  i n  meridional plane, t a n - l x  
U ( f i g .  1) 

r i g h t  - r w i n g  character i s t i c c oor dinat  e 

density P 

shock-wave angle measured from x a x i s  (s 
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CP 

Q 

0 

1 

a 

co 

B 

m 

S 

I 

11 

crossflow angle, sin-’ 

azimuthal coordinate, cy l indr ica l  coordina.te system 

v 

Subscripts 

zero-order variable from solut ion of axisymmetric, nonyaw flow 

f i r s t -o rde r  perturbation var iable ,  implies a der ivat ive with respect to 
a which i s  a function of x and r only, as defined by equations (3) 
and (45) 

f i r s t -o rde r  perturbation var iable ,  implies a der ivat ive with respect t o  
CL which i s  a function of x ,  r ,  and 0 ,  as defined by equations (4 )  

f ree-  stream conditions 

conditions on the  body 

coordinates f ixed with respect t o  the  meridional plane ( f i g .  1) 

conditions immediately behind the  shock wave 

Superscripts 

coordinates f ixed with respect t o  the  body ax i s  

coordinates f ixed with respect t o  the  shock axis 

DEVELOPMENT OF THE EQUATIONS AND BOUNDARY CONDITIONS 

Calculation of the flow over a specified body by the  method of cha,racter- 
i s t i c s  usually requires  t h a t  i n i t i a l  conditions be specif ied along some curve 
between the  body and the  shock wave. For unyawed bodies of revolution, the  
s t a r t i n g  ( i n i t i a l )  data a re  obtained from cone flow solutions f o r  pointed 
bodies and from blunt-body solutions f o r  blunt-nosed bodies.  The present 
problem of yawed bodies of revolution therefore  requires  solutions for yawed 
cones and yawed blunt bodies t o  provide s t a r t i ng  data .  While solutions f o r  
yawed cones are avai lable  ( r e f .  4), none are  current ly  avai lable  fo r  the gen- 
e r a l b l u n t  body. However, fo r  a spherical  body, t he  ax i symet r i c  solution i s  
independent of the yaw angle and therefore  provides s t a r t i ng  data f o r  yawed 
bodies with spherical  t i p s .  It i s  only necessary t h a t  any deviations from the  
spherical  shape should occur i n  the  supersonic region of flow (or, more pre- 
c i se ly ,  downstream of the  l imi t ing  charac te r i s t ic  between the  sonic l i n e  and 
the  body). 
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I n  the  present development of t h e  equations, t h e  i n i t i a l  data are assumed 
given by the  appropriate cone or sphere solution and, a l so ,  t h e  e n t i r e  flow 
f i e l d  fo r  the unyawed body i s  assumed known from previous calculat ion.  The 
problem then i s  t o  develop t h e  equations and boundary conditions fo r  t he  per- 
turbat ion flow f i e l d  due t o  yawing the  body by a small angle. The analysis  
i s  confined t o  t h e  supersonic port ion of t he  flow f i e l d  and w i l l  make use of 
t he  method of charac te r i s t ics .  The method w i l l  not be developed from i t s  
basic  elements, since t h i s  w a s  done previously (refs. 8, 15, or 16, e . g . ) .  
I n  reference 8 it i s  shown t h a t  t h e  charac te r i s t ics  of t h e  per turbat ion f i e l d  
a re  iden t i ca l  with those of t he  axisymnetric flow. The f irst  s tep  of t he  
analysis  w i l l  be t o  obtain the  f i r s t -order  perturbation equations which 
describe the  flow along these charac te r i s t ic  direct ions;  these are the  com- 
pat  i b i l i t y  equations of charac te r i s t ics  theory. 

Equat ions 

The required compatibil i ty equations can be derived i n  a var ie ty  of forms 
depending on the  choice of dependent var iables .  One of t h e  simpler forms i s  
obtained i f  pressure and flow angles are chosen as dependent var iables  (see,  
e .g. ,  r e f .  16 ) .  
with the  equations of motion expressed i n  i n t r i n s i c  or streamline coordinates. 

. However, since the  equations i n  reference 16 a re  va l id  only for two- 
dimensional or axisymnetric flows, it w i l l  be necessary f i rs t  t o  obtain them 
i n  a more general  form. This i s  done i n  appendix A. There it i s  shown t h a t  
fo r  f l o w s  which deviate only s l i g h t l y  from axisymmetric flow, t h e  following 
equations apply 

This approach i s  followed herein,  and the  analysis  begins 

The i n t r i n s i c  coordinates ( s , n , t )  used i n  these equations are illustrate2 i n  
f igure  1 i n  t e r m s  of a uzit vector V, 
and uni t  vectors n and t ,  normal t o  V; t he  normal l i e s  i n  the  meridional 
plane, (D = constant. This orthogonal set may be described i n  t e r m s  of two 
ro ta t ions  of a reference system of axes (xm, rm,  zm) i n i t i a l l y  f ixed with 
respect t o  t h e  meridional plane.  The i n i t i a l  system i s  ro ta ted  by angle 8 
about t he  zm axis, and the  resu l tan t  system i s  ro ta ted  by angle cp about 
t h e  n ax i s  t o  produce the  desired s , n , t  system. The angle 8 i s  ca l led  
t h e  flow angle and Cp t h e  crossflow angle.  These angles and t h e  pressure 
a re  the  dependent var iables  i n  equations (1). 

a s ,_paral le l  t o  t h e  veloci ty  vector 
4 

Expansions f o r  t he  dependent var iables  .- The usual  procedure f o r  obtain- 
ing the  perturbation equations i s  t o  expand a l l  dependent var iables  i n  t he  
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following type of series 

where x, r ,  Q are cy l indr ica l  coordinates ( f i g .  l), and po i s  obtained 
from the  solut ion of t he  nonyaw problem. For t he  f i r s t -o rde r  yaw problem, 
however, it i s  shown i n  references 4 and 8 that t o  be consistent with the  
boundary conditions, it i s  necessary t o  r e t a i n  only the  f irst  t e r m  of t he  s ine 
se r i e s  f o r  crossflow angle (or  crossflow ve loc i ty )  and the  f i rs t  term of t he  
cosine ser ies  f o r  a l l  other var iables .  Thus, i n  prac t ice ,  t he  expressions 
used a r e  

It w i l l  be convenient a t  times t o  use perturbation quant i t ies  which contain the  
@ dependence. These w i l l  be denoted by an a subscript  and defined as 
follows 

These perturbation quant i t ies  may a l s o  be ident i f ied  as der ivat ives  with 
respect t o  yaw angle (e  .g. ,  p, = (ap/aa),=,). However, fo r  brev i ty ,  the  nota- 
t i o n  indicated i n  equations (3) and (4)  w i l l  be used i n  the  development of t he  
method and i n  the  r e s u l t s .  

Expansions fo r  t he  der ivat ives  .- In  addi t ion t o  the  subs t i tu t ions  given 
above fo r  the  dependent var iables ,  expansions must a l s o  be developed fo r  the  
independent var iables  
Specif ical ly ,  a transformation i s  needed which resolves the  der ivat ives  a/&, a /a t  i n to  components along the  i n t r i n s i c  coordinates soLno,to of the  
zero yaw f l o w  f i e l d .  To t h i s  end the  s e t  of u n i t  vectors s,nLt i n  f igure 1 
i s  wr i t ten  i n  terms of the  corresponding set f o r  zero yaw so,no,%o, plus  two 
small ro ta t ions .  
coordinate system of f igure 1 i n  a d i f fe ren t  view. The f i r s t  ro ta t ion  i s  
about to by angle a@,, and the  second about no by angle qa. It i s  
eas i ly  ver i f ied  by inspection of f igure 2 t h a t  t he  following vector re la t ion-  
ships hold t o  the  order of t h i s  ana lys i s .  

s , n , t  which appear i n  the  der ivat ives  i n  equations (1). 
a/as, 

2 -  

2 

T h i s  i s  i l l u s t r a t e d  i n  f igure 2 which shows the  Xm,rm,Zm 

2 2 
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A -  

Thus, t o  f irst  order i n  a, the  gradients along the  s, n, and < direct ions 
are 

- = -  a + C L  ( ea-- a:o + Va-+J a t  a 
as aso 

a ae, - a 
an ano & S O  

a - - -  - -  

First-order per turbat ion equations .- A l l  necessary elements are now 
avai lable  so t h a t  t he  corresponding f i r s t -o rde r  equations can be deduced from 
equations (1). However, i n  order t o  reduce the  nmiber. of perturbation quan- 
t i t i e s ,  it w i l l  be convenient t o  express the  Mach number perturbations i n  
terms of pressure and density perturbations a s  follows. 

The sound-speed perturbation, aa, can, i n  tu rn ,  be eliminated by use of the  
energy equation i n  i t s  integrated form 

a2 + (51) v2 = %2 = constant ( 8 )  

which yields  

a2 = ao2 - G ( Y  - 1)V0Va = ao2 + 2aaoaa 

and 

Y - 1  
“a = - (7) Nova ( 9 )  

On the  other hand, t he  sound speed may be eliminated i n  favor of pressure and 
density by the  r e l a t ion  

(10) 
a 2 = y p  P 

Applying the  l inear iz ing  procedure and combining with equation ( 9 )  gives the  
following expression f o r  t he  veloci ty  perturbation i n  t e r m s  of pressure and 
density perturbat ions 

7 



I 1  l l l l l  

which, with equations ( 9 )  and (7),  gives t h e  desired expression 

Equations ( 3 ) ,  (4),  (6), and (12) can be used t o  obtain t h e  following first- 
order per turbat ion equations from equations (1) : 

It i s  noted t h a t  equations (13) are 
independent of t he  azimuthal angle @, 
and the  problem i s  reduced t o  one 
involving only two space variables.  For 
t h e  solut ion of t h i s  problem by the  
method of cha rac t e r i s t i c s  it i s  neces- 
sary t o  project  t he  f i rs t  two of equa- 

d i rec t ions  
t i o n  ( l3c )  i s  already i n  the  desired 
form since it contains t h e  derivative 
of 'P, i n  t he  t h i r d  charac te r i s t ic  
direct ion,  t h a t  is, along the  stream- 

Sketch (a) l i n e  SO.  To obtain these equations, 

Streamline t i o n s  (13) i n t o  the  charac te r i s t ic  
6 and 7 (sketch ( a ) ) ;  equa- 
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the  approach given i n  references 17 and 18 i s  used. 
following transformation from so,no t o  E.,q coordinates 

Thus, appl icat ion of t he  

results, a f t e r  
der ivat ives  i n  

some manipulation, i n  equations fo r  p, and 81 which involve 
one d i rec t ion  only ( i . e . ,  the  compatibil i ty equations of char- 

a c t e r i s t i c  theory) .  
numerical computations are based : 

These are the  following equations upon which the  present 

where the  coeff ic ients  are 

PO 

ypoM0 
2 A =  

One addi t ional  r e l a t i o n  i s  needed t o  determine t h e  density perturbation, P,, 
which appears i n  t h e  coef f ic ien ts  of equations (14) .  
t o  introduce t h e  entropy function 

The usual  approach i s  

9 



and apply the  condition t h a t  t he  entropy remain constant on streamlines 

The following f i r s t -o rde r  equation f o r  densi ty  per turbat ion r e s u l t s  when 
equation (16) i s  l inear ized  

and applying t h e  transformation (6a) gives the  needed equation f o r  entropy 
perturbat ion 

dS0 
as0 an0 
- -  % - -el- 

The t o t a l  derivative i s  used here since So i s  a function of no only. The 
enthalpy and temperature perturbations,  though not necessary f o r  the  present 
analysis ,  may be obtained f rom the  thermal and ca lor ic  equations of s t a t e .  
The r e su l t  i s  

Equations (13c), (15a,b), (18), and (19) are the  s e t  which w i l l  be integrated 
between the  shock wave and the  body surfaces subject t o  boundary conditions on 
these surfaces.  These boundary conditions are derived i n  t h e  next section. 

I n i t i a l  and Boundary Conditions 

In the  preceding analysis ,  use 
w a s  made of t he  x,r,O coordinate 
system which i s  f ixed with respect t o  
the  d i rec t ion  of the  undisturbed 
stream (see f i g .  1). It will be con- 
venient from the  computational stand- 
point t o  continue with t h i s  wind- 

body ax i s  system natural ly  en ters  the  

conditions, it i s  per t inent  a t  t h i s  
point t o  show the  difference between 
these coordinate systems by means of a 
simple example. Consider t he  flow over a 
sphere a t  supersonic speeds, sketch (b). 

Y Y '  

Data input line, 

iy oxis) oriented system. However, since the  

X '  (Bodyaxls) discussion of i n i t i a l  and boundary 

Sketch (b) 
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A 

A s  the  body i s  ro ta ted  by angle a ,  an observer f ixed with respect t o  V, 
does not sense a change i n  the  flow, whereas an observer f ixed with the  body 
does sense a change. This change can be colrrputed from a knowledge of the  
axisymmetric flow f i e l d ,  and the equations for such a computation a re  derived 
i n  appendix B .  These equations w i l l  be used i n  the  specif icat ion of the  
boundary conditions below. Also, since it i s  usually desirable t h a t  f i n a l  
r e s u l t s  be expressed i n  t e r m s  of body axes, t h i s  transformation i s  included as 
an option i n  the  computer program described below. 

I n i t i a l  conditions.- In  order t o  begin the  computation of the  flow f i e l d  
it i s  necessary t o  specify,  along a l i n e  between the  body and the  shock, val- 
ues for t he  four perturbation quant i t ies  pl, P1, 01, 'P1 and a l s o  the  shock 
wave angle and posi t ion per turbat ions.  
the  shock conditions below.) In  the  case of a blunt-nosed body, t h i s  i n i t i a l -  
data l i n e  must be s l i g h t l y  downstream of the  sonic l i n e  as shown i n  sketch (b) .  
There i s  no r e s t r i c t i o n  i n  the present analysis  as t o  the  nature of t he  body 
upstream of the  i n i t i a l - d a t a  l i n e .  For t he  general  blunt-body f l o w ,  it may be 
possible t o  use the  methods of reference 19, for example, t o  provide the  
necessary i n i t i a l  da ta .  
avoided by considering only spherical ly  blunted or pointed bodies. 
spherical ly  blunted body, a l l  perturbation var iables  a re  i n i t i a l l y  zero. For 
the  computation of f l o w  over sharp-nosed bodies, i n i t i a l  values may be 
obtained f rom tabulated r e s u l t s  f o r  cone f l o w  ( ref .  4) or  f r o m  a d i r ec t  calcu- 
l a t i o n  of cone f l o w  by the  present methods. 

(These quant i t ies  a re  introduced i n  

However, i n  the  present appl icat ion t h i s  problem i s  
For the  

Body conditions.- Two conditions a t  the  body surface specify (1) the  flow 
angle, 0 ,  and (2)  t h e  entropy, S, a t  t he  surface.  
of the  f l o w  angle i s  given by the  body geometry, while the  entropy, SB, 
depends on the  angle of t he  shock wave through which the  surface streamline 
passes. The problem at  hand i s  t o  obtain the  appropriate conditions on the  
perturbation quant i t ies  8 1  and S1.  These conditions can be derived d i r ec t ly  
i n  terms of wind axes.  However, it i s  simpler t o  work f i r s t  with body axes 
and'then apply the  transformations given i n  appendix B t o  convert the  r e s u l t s  
t o  wind axes. 

The prescribed value, BB, 

The usual expansion procedure can be used t o  wri te  t he  body conditions as 
follows i n  t e r m s  of body-axis (primed) var iables  

It i s  immediately evident for t he  flow angle t h a t  

01'  = 0 ('23) 
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because the  body angle cannot change and 
entropy condition i s  more complicated since,  f o r  t h e  general  blunt body, the  
entropy per turbat ion at  the  surface may depend on t h e  nose shape (see ref.  19). 
While t h i s  does not present any d i f f i c u l t y  f o r  t he  present method, nothing 
de ta i led  can be stated about the  general  case u n t i l  such blunt-body solutions 
a re  avai lable .  However, t he  entropy condition can be establ ished fo r  two 
spec i f ic  cases of i n t e r e s t :  
bodies.  For the  spherical  nose, t he  surface entropy does not change f a r  small 
angles of yaw, and therefore  

8, = 0'~. Specification of t he  

(1) spherical ly  blunted bodies and (2) pointed 

SI' = 0 (spherical  nose) 

For pointed bodies, t he  entropy i s  constant along meridional planes, 
0'  = constant.  Then 

S1' = SIC (pointed nose) ( 24b 

where SlC i s  t h e  entropy perturbation obtained f r o m t h e  solut ion f o r  a yawed 
cone. This l a t t e r  condition seems t o  contradict  the  notion t h a t  the  body sur- 
face should have a s ingle  value of entropy f o r  a l l  values of 0 ' .  It i s  
pointed out i n  reference 8 t h a t  the entropy var ia t ion  with i s  va l id  only 
outside a very t h i n  vo r t i ca l "  layer  which i s  close t o  t h e  body surface; a l s o ,  
it i s  stated that the  pressure does not change across t h e  t h i n  layer .  There- 
fore ,  equation (24b) i s  taken t o  be the  proper condition fo r  t he  "outer" flow. 
It i s  worth noting that i n  reference 20 it w a s  concluded t h a t  t h i s  v o r t i c a l  
l ayer  could be neglected when the  boundary layer  on a yawed cone w a s  studied. 

@ '  
?I 

The f ina l  s tep  i n  obtaining t h e  surface conditions i s  the  conversion of 
equations (23) and (24) i n to  the  wind-axis system. 
of equations (B4) and (~16). 

This i s  done with t h e  use 
The r e s u l t  i s  

and 

where 

K={ 0, spherical  
Sic, pointed 

as, 
ax 

nose 
nose 

Since the  entropy, So, i s  a function of t he  normal coordinate, no, only equa- 
t i o n  (26) may be wr i t ten  as 
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Equations (25) and (27) provide the  desired body conditions, so a t ten t ion  i s  
now directed t o  the  boundary conditions a t  the  shock wave. 

s e r i e s  for CL and 0. However, since 
the  jump conditions a r e  conveniently 
expressed i n  terms of shock-wave angle, 
o, t h i s  parameter i s  a l s o  introduced i n  
t h e  present analysis .  With use of the  
notation shown i n  sketch ( e ) ,  t he  shock 
posi t ion and angle are wr i t t en  i n  the  
following l inear ized form: 

Shock conditions.- The conditions on pressure, density,  and flow-angle 
perturbations w i l l  be derived f irst  with the  use of wind coordinates. The 

If one imagines a cone tangent t o  the 
shock a t  point A, t he  angle perturba- 
t i o n ,  ol, i s  eas i ly  recognized as the  

k 

‘I 

L X  

Sketch ( e )  

r a t i o  of shock t o  body yaw angles.  
t h a t  will appear i n  the  boundary conditions, a re  unknown functions which must 
be specified i n i t i a l l y  and computed point by point along the  shock surface.  
To t h i s  end, an addi t ional  equation i s  available which r e l a t e s  
This i s  obtained from the  geometrical r e l a t ion  

The two shock perturbation parameters, 

R 1  t o  ol. 

dR - = t a n  o 
dx 

Using equations (28) and (29) results i n  

The problem now i s  t o  specify pl, pl, 81, and (P1 i n  t e r m s  of R 1 ,  ol, and 
the  jump conditions (it i s  more straightforward here t o  work with density 
ra ther  than entropy).  The f irst  three  of these var iables  are considered i n  
the  next paragraph and the  crossflow angle w i l l  follow. 

Conditions on pl, pl, and 8 1 :  For uniform free-stream conditions, t he  
conditions immediately behind the  shock are functions of 
may be expanded i n  se r i e s  as follows. 
only, but holds a l s o  for density and flow angle with change of notat ion.)  

o only and, hence, 
(The analysis  i s  given for pressure 
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dp do 
do da 

+ - - - - a + .  . . - d p a + .  . . - - p s o  ps - pso + Zi 

Here, do/d-a i s  shock-angle perturbation, o,, and dp/do can be evaluated i n  
terms of t he  oblique shock r e l a t ions  (see, e .g., r e f .  21) .  In  equation (32), 
ps 
present problem, however, t h e  calculat ions are made along the charac te r i s t ics  
of t h e  ax i spmet r i c  f i e l d ,  and therefore  the  pressure per turbat ion a t  point A 
m u s t  be specified.  
r a d i a l  distance from point A. 

i s  the  pressure behind the  yawed shock (point B, sketch ( e ) ) .  For t h e  

This can be done by expanding t h e  pressure i n  t e r m s  of 

By subs t i tu t ion  of equation (33) i n t o  (321, and with the  use of equations (28) 
and (29), t he  boundary condition on p, i s  obtained 

Similarly,  for t he  density and flow angle 

For a perfect  gas, t h e  der ivat ives  with respect t o  shock angle a re  

s i n  oo cos Go 9 = 2p0 {cot oo - 
2 do s i n  oo + [2/(Y - 1)MW2] 

s in(a0 - eo)cos(ao - eo> + 4 cos2(o0 ---? - e ) - - * = , -  2 2 do s i n  oo cos oo ( y  + 1)MW s i n  a, 

( 3 7 )  

(38) 

(39) 

Condition on 'pl: The shock condition f o r  crossflow angle 'p, i s  
obtained from t he  conservation of tangent ia l  momentum i n  the  azimuthal plane 
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3 

of the  shock wave. For the  appl icat ion 
of t h i s  condition it i s  he lpfu l  t o  use 
a shock-oriented coordinate system, and 
t o  consider the  cone tangent t o  the  
shock shown i n  sketch (a ) .  The cone i s  
yawed by the  angle -sal. Conservation 
of tangent ia l  momentum across the  shock es ~x 

vm - x"  

L requires that t 

(40) A 2 

w" = V, . e t  
3 Here e t  i s  a uni t  vector oriented i n  

the  azimuthal d i rec t ion  with respect t o  
the  shock (sketch ( a ) ) ,  wl' 
veloci ty  component i n  the  <t 
shock-oriented coordinate system. 
V, along e t  i s  -V, sin(-aa,), and therefore  the  sca la r  product i n  equa- 
t i o n  (40) gives, i n  t he  general  case, 

Sketch (a) i s  the  
direct ion,  and the  double prime indicates  a 

For t he  plane @'I = 5 / 2 ,  the  component of 
A 

Thus, 

Now, i n  order t o  convert t he  above condition i n t o  wind axes, t he  transforma- 
t i ons  developed i n  appendix 13 can be 
f o r  the  fac tor  -ol, since -ao, i s  
Therefore the  equation which must be 

used. 
t he  ro t a t ion  angle fo r  the  present case.  
used here i s  

Equation (B17) appl ies  here except 

(43) 

(Equation (B4) need not be considered since 
on crossflow angle i s  therefore  

'Po = 0.) The boundary condition 

COS 8, + -E X s i n  
(P, = 0, (2 - (44) 

This completes the  specif icat ion of the  equations and boundary conditions 
of the  problem. Attention i s  now directed t o  a b r i e f  descr ipt ion of t he  com- 
puter program wr i t ten  f o r  t he  solution of t h e  equations and t o  some of t he  
r e s u l t s  obtained from the  program. 

NUMERICAL COMPUTATIONS 

Equations and boundary conditions f o r  t he  f i rs t -order-per turbat ion 
flow f i e l d  have been presented i n  the  previous sect ions.  The solution of 



these equations by the  method of charac te r i s t ics  w a s  programmed, i n  FORTRAN 
machine language, f o r  t he  IBM 7090 computer. 
order problem required a de ta i led  knowledge of t he  zero-order (zero angle of 
yaw) flow f i e l d ,  t he  perturbation program w a s  incorporated in to  an ex is t ing  
program fo r  axisymmetric flow ( r e f .  3 ) .  
pert’urbation quant i t ies  a t  each mesh point ,  a f t e r  t h e  zero-order quant i t ies  
had been computed. Per t inent  aspects of t he  computer program, a s  modified, 
are described below, followed by a presentation of some r e s u l t s .  

Since the  solution of the  first- 

This program w a s  modified t o  compute 

’ Computer Program 

Shock 
, A  

Field 

A 

Sketch ( e )  

The basic  computing uni t  of t he  
program involves mesh points  A, B, and 
C shown i n  sketch ( e )  fo r  body, f i e l d ,  
and shock poin ts .  The compatibil i ty 
and boundary conditions a re  used i n  
the  usual  manner t o  determine data a t  
point C i n  t e r m s  of known data at  
points  A and B. A fourth point ,  D, i s  
used i n  the  body and f i e l d  calculat ions 
i n  order t o  obtain a quadratic i n t e r -  
polat ion f o r  ce r t a in  var iables  as 
explained below. 
per turbat ion problem d i f f e r s  f r o m  t h a t  
f o r  axisymmetric flow i n  t h a t  (1) gra- 
d ien ts  of zero-’order quant i t ies  must 
be computed and (2)  the  entropy pertur- 
bation and crossflow angle must be 
integrated along the  streamline direc- 
t ion ,  so. These two points a re  dis- 
cussed next.  

The procedure fo r  t he  

Gradients o f  t he  axi-symmetric f i e l d .  - A l i n e a r ,  backward difference 
method i s  used t o  compute the  gradients of pressure,  po, and f l o w  angle, eo, 
along the  charac te r i s t ic  direct ions fo r  f i e l d  points ,  and along charac te r i s t ic  
and boundary d i rec t ions  f o r  boundary points .  Thus, f o r  example, f romthe  d i f -  
ference of data a t  points  A and C,  gradients are obtained which are applied 
t o  point C .  
a r e  then transformed t o  components i n  the  direct ions f o r  use i n  
t he  calculat ions.  

The gradients  obtained i n  t h i s  manner f o r  two oblique direct ions 
so and no 

A t  body and f i e l d  points,  entropy i s  approximated by a second-degree 
polynomial i n  t he  normal coordinate with the  use of data  a t  points A, B, 
and D (sketch ( e ) ) .  
t he  shock point, the  entropy gradient i s  obtained by a l i nea r  approximation. 

The gradient thus obtained i s  applied a t  point C .  For 

A t  the  body, t he  pressure gradient i n  t he  normal direct ion,  apo/no, i s  
computed d i r ec t ly  from the  momentum equation ( l b )  and the  boundary condition 
on 8,. 
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Calculation fo r  'P1 and SI.- The equations for  crossflow angle and 
entropy perturbations (eqs.  ( l3c)  and ( 1 9 ) )  involve the  derivative of these 
quant i t ies  with respect t o  so only. These quant i t ies  are, i n  general, func- 
t i ons  of both so and no, and therefore the  equations apply along a l i n e  
no = constant. The problem which a r i s e s  i n  the  numerical computation i s  t h a t  
t he  f i e l d  points  A, B, C ,  and D do not correspond t o  the  same value of no 
(see sketch ( e ) ) .  
use of slopes defined by equations ( l3c)  and (l9), t he  data a t  B and D are 
projected forward, i n  t he  so direct ion,  t o  the  l i n e  AB'.  The variables 'PI 
and S1 are then evaluated a t  point *E by means of quadratic interpolat ion with 
data a t  points A,  D', and B'. Evaluation of these var iables  a t  point C i s  
then completed with the  help, once again, of equations (13c) and (19) and the 
data  a t  point E .  

This problem i s  resolved i n  the  following manner. With the  

Input data .- The computer program requires  input information giving free- 
stream conditions, and s t a r t i ng  data a t  as many as 40 points  along a nonchar- 
a c t e r i s t i c  l i n e  between the  body and the  shock. 
s t a r t i ng  values x, r ,  V, 8 ,  p,  and p fo r  the  axisymmetric flow, and (2) the  
f i r s t -o rde r  perturbation quant i t ies  VI, 81, (PI, p1, and PI. For t he  r e s u l t s  
presented herein,  these s t a r t i ng  data were derived i n  t h e  following manner. 

These data include (1) 

For the  pointed body, s t a r t i ng  data w a s  obtained from a solution f o r  t he  
flow over the  tangent cone t o  the  pointed nose. While some such solutions are 
tabulated i n  reference 5 ,  t h e  cone angles and Mach numbers a re  l imited.  
Therefore, i n  order t o  provide fo r  a rb i t r a ry  conditions, t he  methods presently 
being described were specialized t o  the  cone problem. The somewhat simplified 
equations were then programmed t o  provide solutions t o  cone flow, and these 
r e s u l t s  were used f o r  input t o  the  general program. The r e s u l t s  of t h i s  cone 
program a re  compared with those of reference 5 i n  t he  following section. 

For the blunt-nosed bodies, s t a r t i ng  values fo r  t he  ax i symet r i c  flow 
were obtained f r o m  a computer program based on the  inverse method of re fer -  
ences 1 and 2 .  
spherical-nosed bodies, a l l  s t a r t i ng  perturbation quant i t ies  were set equal t o  
zero. 

Since the  blunt-body r e s u l t s  presented a re  r e s t r i c t e d  t o  

Specification of i n i t i a l  data a s  described above permits the  present com- 
puter programs t o  be used fo r  t he  computation of flows over pointed, or spher- 
i c a l l y  blunted bodies of revolution a t  small angles of yaw. A number of these 
flows were obtained, and some of t he  r e s u l t s  are presented i n  the  next sect ion 
with t h e  object of es tabl ishing the  accuracy and range of app l i cab i l i t y  of t h e  
l inear ized  charac te r i s t ics  method. 

Results - 
The computer programs described herein make it possible t o  obtain the  

de ta i led  flow f i e l d s  over par t icu lar  bodies with a small manual e f f o r t  and, 
therefore ,  a de ta i led  presentation or  tabulat ion of results i s  not attempted. 
However, i n  order t h a t  the computer programs may be used with confidence, t h i s  



sect ion w i l l  present r e s u l t s  which a re  intended t o  show the  accuracy and range 
of appl icabi l i ty  of t h e  method. 
t i o n  var iables  obtained from the  present solut ion a re  , s t r i c t l y  speaking, 
der ivat ives  with respect  t o  yaw angle as defined by equations (3) and ( 4 ) .  

It i s  important t o  r e c a l l  t h a t  t he  perturba- 

Specif ical ly ,  t he  per turbat ion var iables  shown i n  
wr i t ten  

the  following r e s u l t s  may be 

and so on. 
the  range of yaw angles over which a l i nea r  approximation may be used. 
t h i s  question can be answered, however, it i s  necessary t o  es tab l i sh  the  
accuracy of t he  numerical computations. 

Therefore, t he  appl icabi l i ty  of t he  method depends primarily on 
Before 

Accuracy -o f  t he  nunerica.l, c-omputations .- Two methods a re  used herein t o  
assess  the  numerical accuracy: (1) a d i r ec t  comparison with other numerical 
r e s u l t s ,  and (2) a self-comparison of the  r e s u l t s  obtained with various char- 
a c t e r i s t i c  mesh s i zes .  The f i r s t  check can, of course, be made only i n  par- 
t i c u l a r  cases. One such case i s  the  yawed cone fo r  which accurate tabulated 
r e s u l t s  of reference 5 a re  avai lable  (note tha t  corrections t o  the crossflow 
veloci ty  given i n  reference 6 must be used with the  tabular  d a t a ) .  A computer 
program based on the  present l inear ized  charac te r i s t ics  method w a s  wr i t ten  f o r  
t he  cone problem, and r e s u l t s  of t h i s  program are shown i n  f igure 3 together 
with the  r e s u l t s  of reference 5 .  First-order perturbations t o  the  pressure,  
density,  flow angle, and crossflow angle a re  presented f o r  a 15' cone a t  two 
Mach numbers. It may be seen t h a t  t he  general  form of the  present solut ion 
agrees with t h a t  of reference 5 but t h a t  there  are some s m a l l  differences.  
The e f f ec t  of mesh s i z e  on these differences w a s  investigated by recomputing 
the  high Mach number case with d i f fe r ing  numbers of s teps  between the  shock 
and body. 
of s teps  i s  p lo t ted  on the  abscissa .  The var ia t ion  of the  pressure perturba- 
t i o n  i s  nearly l i nea r  and i s  eas i ly  extrapolated t o  zero mesh s ize  which pre- 
sumably i s  the  exact value. 
d i f f e r s  f romthe  resu l t  of reference 5 by less than O . lpe rcen t ,  and i s  used 
t o  compute the  r e l a t ive  e r ro r  a l s o  shown i n  f igure  4 .  

This e f fec t  i s  shown i n  f igure 4 where the  reciprocal  of the  nurriber 

This extrapolated pressure,  labeled pl(co) , 
The advantage of 
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computing the  r e l a t i v e  e r ro r  i n  t h i s  way i s  t h a t  it can be applied when exact 
solutions are not ava i lab le .  Such i s  the  case fo r  t he  ogive which i s  
presented next. 

Figure 5 shows the  a x i a l  var ia t ion  of t he  surface pressure perturbation 
on a fineness r a t i o  3 ogive a t  a Mach nwciber of 3.05. 
ogive were obtained from the  cone program; the  starting tangent-cone w a s  
assumed t o  be 1 percent of t h e  ogive length.  Three solut ions are shown i n  
f igure  5 ,  corresponding t o  varying mesh s izes  as control led by t h e  number of 
i n i t i a l  data poin ts .  I n i t i a l  values of t he  surface pressure perturbation a re  
the  same fo r  the  three  solutions,  but numerical e r ro r s  which depend on mesh 
s ize  a re  introduced at  downstream points .  Figure 6 shows the e f f ec t  of t he  
mesh s ize  on the  surface pressure perturbation and t h e  r e l a t i v e  e r ror  a t  two 
body s t a t ions .  
4 percent; computing time on the  I B M  7090 w a s  approximately 10 minutes fo r  
t h i s  case. 

I n i t i a l  values f o r  the  

For t h e  f i n e s t  mesh presented, t he  r e l a t i v e  e r ro r  i s  l e s s  than 

Attention i s  now directed t o  a typ ica l  blunt-nosed body. Figure 7 shows 
the  a x i a l  var ia t ion of surface pressure perturbation on a 15' sphere-cone a t  
a Mach number of 10. This f igure ,  as i n  t he  previous example, presents 
r e s u l t s  for  three solutions corresponding t o  d i f fe ren t  mesh s i zes .  These 
solutions a re  i n  reasonable agreement, and it i s  noted t h a t  they approach the  
cone value a t  a large distance from the  nose. (The pressure perturbation 
curve has a discontinuous slope a t  the  point of juncture between the  sphere 
and cone; regions with discontinuous slopes a l s o  appear a t  downstream points  
(x/Rb = 8, 17) which correspond t o  subsequent re f lec t ions  of t he  Mach wave 
from the  sphere-cone juncture.  These regions a re  examined i n  grea te r  d e t a i l  
below.) Figure 8 shows the  var ia t ion  of surface pressure and r e l a t ive  e r ror  
with mesh s ize  for  two points ,  x/Rb = 0.67 and 6.1. 
about 3 percent for  the  f i n e s t  mesh s ize  and computing t i m e  w a s  about 
8 minutes. 

The r e l a t i v e  e r ror  i s  

Comparison with another numerical solution.-  In  reference 14, r e s u l t s  a r e  
presented f o r  t he  perturbation flow f i e l d  over a loo  sphere-cone a t  a Mach 
number of 15. The calculat ions of reference 14  were based on the  l inear ized 
charac te r i s t ics  method and therefore  provide the  opportunity fo r  a d i r ec t  
check of t h e  present computer program. However, before making a comparison, 
it i s  necessary t o  discuss two points :  
and (2) the  differences of r e s u l t s  presented i n  t e r m s  of wind and body axes. 

(1) discont inui t ies  i n  the  solutions,  

Discontinuous solutions t o  the perturbation flow f i e l d  were a l s o  noted 
i n  reference 14, and a method f o r  calculat ing these solut ions w a s  discussed 
i n  some de ta i l ;  r e s u l t s  were not presented, however. Ho attempt i s  made i n  
the  present paper t o  t r e a t  t he  discontinuous solut ions ana ly t ica l ly ,  but it 
can be shown numerically that the e f f e c t s  of a discontinuous curvature are 
local ized.  This i s  done by computing the  flow over a body with a short  t ran-  
s i t i o n  curve between the  sphere and cone segments. Such a body i s  shown i n  
f igure 9. If the  end point of the  t r ans i t i on  curve i s  allowed t o  match a cone 
which i s  s l igh t ly  displaced from the  o r ig ina l  one, it i s  possible t o  express 
the  curve as a f i f th-degree polynomial which provides continuity of t he  f i rs t  
two der ivat ives  a t  the  s t a r t i ng  point and of t he  f i rs t  four der ivat ives  a t  



t he  end point .  
t he  t r a n s i t i o n  region and i n  the  region of t he  f i rs t  -&ch wave r e f l ec t ion .  
Figure l O ( a >  shows the  pressure perturbation a t  t h e  shock and t h e  shock-angle 
perturbation i n  t h e  region where the  Mach l i n e  f romthe  sphere-cone juncture 
reaches the shock. It i s  seen t h a t  t he  t r a n s i t i o n  curve eliminates the  dis-  
continuity and that a t  some distance from t h i s  point t h e  r e s u l t s  are essen- 
t i a l l y  the  same fo r  both cases. This shows t h a t  t he  primary e f f e c t s  of t h e  
discontinuous surface curvature are confined t o  limited regions of t h e  flow 
f i e l d .  It must be emphasized, however, that the  discontinuous jumps i n  the  
pressure per turbat ion are a f a i l i n g  of t h e  present expansion technique. From 
t h e  p r a c t i c a l  standpoint t h i s  failure i s  of minor consequence since i n  ac tua l  
flows t h e  viscous boundary layer  tends t o  smooth t h e  discontinuous body 
curvature. 

Figure 10(b) shows t h e  pressure per turbat ion on t h i s  body i n  

To i l lustrate  the  e f f ec t s  of t he  wind-axes t o  body-axes transformation, 
as discussed i n  appendix B, use i s  made of r e s u l t s  f o r  a 15' sphere-cone a t  a 
Mach number of 10. Figure l l ( a )  shows the  pressure per turbat ion a t  the  body 
and at  the  shock, and f igure l l ( b )  shows t h e  shock posi t ion and angular per- 
turbat ions.  I n  the  pa r t  of the  flow f i e l d  outside the  region of influence of 
t h e  conical port ion of t he  body, a l l  perturbations a re  zero with respect t o  
wind axes. 
a r e  determined by the  solution of t he  axisymmetric flow f i e l d .  (see appen- 
d ix  B ) .  Downstream from the  Mach l i n e  or iginat ing a t  the  sphere-cone junc- 
ture ,  a body-axis variable i s  obtained by a combination of t he  wind-axis 
variable and the addi t ional  t e r m  obtained from the  ax i s  transformation. 
contributions of both terms are  evident i n  f igure  11. 

Also, i n  t h i s  region the  perturbations with respect t o  body axes 

The 

With these points  i n  mind a t t en t ion  i s  directed t o  a comparison with t h e  
r e s u l t s  of reference 14. Some of these r e s u l t s  a r e  reproduced i n  f igure  12 
i n  addi t ion t o  those of the  present computer program. Figure l 2 ( a )  shows the  
pressure perturbation fo r  t he  body and the  shock. The two r e s u l t s  agree i n  
general  t rend,  but there  a re  sizable differences i n  the  pressure perturbation 
both at  the  shock and body which seem la rger  than estimated numerical errors. 
I n  view of t h e  discussion of the  preceding paragraph, t h e  difference i n  the  
shock-wave pressure i s  l i k e l y  due t o  differences i n  the  nonyaw solut ion.  This 
could possibly account a l s o  f o r  t he  disagreement i n  body pressures.  
ure 12(b) shows the  var ia t ion  of the  crossflow angle along the  body and shock 
surfaces.  A t  the  shock fo r  x greater  than 7.5 the two r e s u l t s  do not agree. 
A reason f o r  t he  disagreement has not been de f in i t e ly  established; however, it 
seems t o  be a r e s u l t  of differences i n  the  shock boundary condition. The dis- 
continuity i n  the  crossflow angle i n  the  present solut ion follows d i r ec t ly  
from the  boundary condition which was wr i t ten  i n  terms of t he  shock angular 
perturbation, 01. The var ia t ion of t h i s  parameter with a x i a l  distance i s  
shown i n  f igure  l 2 ( c ) .  Reference 14 presents  the  shock r a d i a l  perturbation 
( f i g .  1 2 ( c ) ) ,  but not  the  angular perturbation, and therefore  cause of t he  
difference i n  crossflow angle cannot be establ ished with cer ta in ty .  It i s  
noted, however, t h a t  t he  present r e s u l t s  seem somewhat more consistent with 
the  over-al l  flow picture  i n  t h a t  t he  solutions tend t o  the  cone solut ion a t  
a large distance from the  nose. 

Fig- 
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To t h i s  point ,  t he  r e s u l t s  presented have pertained primarily t o  t h e  
numerical accuracy of t h e  couputer program described herein.  
however, t he  question of app l i cab i l i t y  of t he  l inear ized  charac te r i s t ics  
method fo r  predict ing the  flow f i e l d  over bodies a t  small yaw angles. 
top ic  i s  discussed next. 

There remains, 

This 

Applicabili ty of t he  l inearized-perturbation me5hAd.- S t r i c t l y  applied,  
t he  present method y ie lds  only the  i n i t i a l  slope of t he  f l o w  variables with 
respect t o  yaw angle. 
provide useful  results over a range of yaw angles.  I n  order t o  estimate the  
range of angles over which the  l i nea r  approximation may be applied, one mst 
compare l inear ized  r e s u l t s  with experiment, exact theor ies ,  or with solutions 
of t he  second order per turbat iqp problem. 
not avai lable  f o r  t he  problem a t  hand, t h i s  section w i l l  r e l y  on comparisons 
with experiment and with shock-expansion methods which a re  applicable t o  
pointed bodies (see refs. 16 and 18) . 
must be considered an approximate method, it does include second-order e f f e c t s  
of t h e  yaw angle and, therefore,  provides a check on the  range of appl icabi l -  
i t y  of t he  present method. 

However, such a l i nea r  approximation can i n  many cases 

Since r e s u l t s  of exact theor ies  are 

Although the  shock-expansion theory 

I n  reference 18 comparisons are made between the  predictions of t he  
shock-expansion method and experimental results f o r  yawed ogives. Some of 
these r e s u l t s  a r e  reproduced i n  f igure 13 which a l s o  shows the  predictions of 
t he  present method. The theor ies  and the  experimental points  are i n  reason- 
able  agreement a t  A t  a = loo t he  present method predic t s  
pressure coef f ic ien ts  somewhat lower than predicted by shock-expansion theory. 
Both methods use cone flow fo r  i n i t i a l  values, but second-order perturbations 
were included i n  the  shock-expansion r e s u l t s  while t h e  present method uses 
only the  l inear  t e r m .  Therefore, t he  difference between the  two theor ies  a t  
x/L = 0 can be a t t r i bu ted  t o  t h i s  second-order term. 
that the  difference a t  other body s t a t ions  i s  due t o  t h i s  term. 

a = 0 and a = 5'. 

It may a l s o  be infer red  

The shock-expansion method i s  of ten used t o  predict  l i f t -  and moment- 
curve slopes f o r  pointed bodies. However, fo r  ogive-cylinder bodies the  
theory does not work w e l l .  For t h i s  reason t h e  second-order shock-expansion 
theory w a s  developed i n  reference 22. I n i t i a l  slopes of t he  normal-force 
curve and center-of-pressure locat ions fo r  an ogive-cylinder are shown i n  
f igure 14 .  It i s  seen t h a t  t h e  present method generally agrees with second- 
order shock-expansion theory except fo r  predict ing the  center of pressure of 
ogive-cylinders of large fineness r a t i o s .  The reason f o r  t h i s  difference i s  
d i f f i c u l t  t o  assess with t h e  present information (it cannot be a t t r i bu ted  t o  
second-order yaw e f f e c t s  since only i n i t i a l  slopes are involved). 

For blunt-nosed bodies, t he  shock-expansion method i s  not applicable,  
and r e s u l t s  of other su f f i c i en t ly  accurate theor ies  a re  not avai lable .  How- 
ever,  unpublished experimental data which are idea l ly  sui ted fo r  such a com- 
parison have been made avai lable  by I@. Joseph W .  Cleary of NASA. The h t a  
were obtained f romthe  Ames 3.5-FOO-t Hypersonic Wind Tunnel and include sur- 
face pressure d is t r ibu t ions  on yawed spherical ly  blunted cones. Figure 15 
compares the  predict ions of t he  present method with some of t h i s  experimental 
data  f o r  15O and 30' cones a t  a Mach number of about 10. For both cones, t he  
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theory and experiment agree as wel l  f o r  2' yaw as f o r  zero yaw. However, f o r  
5' yaw the  agreement i s  better fo r  t he  30' than f o r  t he  15' cone. The dis- 
agreement a t  5 O  yaw f o r  t he  spherical ly  blunted 15O cone i s  a t t r i bu ted  prima- 
r i l y  t o  second-order yaw e f f e c t s  which are neglected by the  present theory. 

In  these comparisons with experiment it i s  seen that the  accuracy of t h e  

For blunt  bodies, very l i t t l e  can presently 
l i nea r  approxim2,tion depends on the cone angle, and- it might be ant ic ipated t o  
depend a l s o  on t h e  Mach number. 
be established concerning the  dependence of t h e  l i n e a r  approximation on blunt- 
ness and Mach number. However, f o r  slender bodies one can obtain some f e e l  
for these e f f ec t s  by applying hy-personic s imi l a r i t y  concepts (e .g . ,  refs. 16 
and 23). 
obtained i f  the  parameters KT = M / f  and Ka =& are unchanged. For these 
similar f l o w s  the e r ro r  i n  the  l i nea r  approximation depends on & only. 
Figure 16 shows conditions f o r  flows which are similar t o  t h a t  fo r  the  ogive 
of f igure 13, and these conditions show how the  accuracy of t he  present method 
depends on Mach number and fineness r a t i o .  Figure 16(a) indicates  t h a t  f o r  a 
f ixed e r ro r  t he  yaw angle must decrease with increasing Mach nwnber, but t h a t  
t h e  fineness r a t i o  m u s t  increase i n  order t o  obtain a s i m i l a r  flow. For both 
the  e r ro r  and t h e  Mach nwdber f ixed,  f igure  16(b) shows that the  yaw angle 
must decrease with increasing fineness r a t i o ,  a t rend  a l s o  noted i n  the  blunt- 
body r e s u l t s  of f igure  1.5. 

Thus fo r  slender bodies a t  la rge  Mach nwdbers, s imila , r  flows are 

While the  curves of f igure  16 indicate  how t h e  e r ro r  var ies  with fineness 
r a t i o ,  they do not show the  Mach nutriber var ia t ion  fo r  a f ixed fineness r a t i o ,  
nor do they provide a means f o r  estimating i t s  magnitude. 
one can use second-order cone solut ions.  Figure 1 7  shows the  r a t i o  of t he  
second- t o  f i r s t -o rde r  pressure perturbations as obtained from the  tabulated 
r e s u l t s  of reference 5 and from the  thin-shock-layer theory of reference 24. 
Based on t h i s  r a t i o ,  t he  e r ro r  i n  the  l i nea r  approximation can be computed 
(neglecting higher order t e r m s ) ,  and i s  shown on t h e  ordinate of f igure 17 fo r  
2O yaw. It should be noted t h a t  t h i s  e r ro r  i s  based upon the  increment i n  
pressure due t o  yaw, and t h a t  the percentages would be decreased if based upon 
t h e  ac tua l  surface pressure.  

For t h i s  purpose 

For cone angles from about 5' t o  45' Cheng's shock-layer theory and 
Kopal's numerical r e s u l t s  both indicate a decrease i n  the  e r ro r  with increas- 
ing cone angle. 
predicts  increasing e r ro r  f o r  la rger  or smaller angles .  For very small cone 
angles the  approximations of shock-layer theory are violated and the  decrease 
i n  e r ror  fo r  cone angles less than 5' should be discounted. 
of figure 17  are obtained f o r  pointed cones they can, i f  used with caution, 
provide e r ror  estimates f o r  blunted bodies. It i s  noted i n  the  figure t h a t  
the  shock-layer theory approaches Newtonian theory f o r  la rge  Mach numbers, and 
therefore  should provide e r ro r  estimates fo r  those conditions where the  
Newtonian approximation i s  applicable.  The predicted decrease i n  e r ro r  as the  
cone angle tends toward 45O i s  i n  agreement w i t h  t h e  experimental r e s u l t s  of 
f igure 15 fo r  sphere-cones. 

The shock-layer theory passes through zero fo r  a 45' cone and 

While the  r e s u l t s  

Final ly ,  it should be noted t h a t  f o r  bodies of high fineness r a t i o  a 
viscous crossflow ( r e f s .  23 and 26) may become important. T h i s  viscous e f f ec t  
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i s  second order i n  angle of a t tack  so t h a t  it has a var ia t ion  with yaw angle 
which i s  e s sen t i a l ly  the  same as t h a t  predicted by Newtonian theory.  Recent 
experimental r e s u l t s  on second-order viscous e f f ec t s  have a l s o  been obtained 
f o r  cones i n  reference 27. 

The f i r s t -o rde r  theory described herein provides the  correct  i n i t i a l  
slope with respect t o  yaw, and i s  applicable so long as the  second-order 
crossflow e f f e c t s  ( inviscid or viscous) do not upset the l i n e a r i t y  of the  
desired quantity ( the  l i f t  curve, f o r  example). 
t h i s  occurs depends on the  Mach number, the body slope, and on i t s  over-al l  
f ineness r a t i o .  A ru l e  t h a t  has i n  the  past  been applied t o  pointed bodies 

approaches the  half-angle of a cone tangent t o  the  nose of the  body. 

The angle of yaw at  which 

- s t a t e s  t ha t  the second-order yaw t e r m s  become important when the  yaw angle 

CONCLUDING REMARKS 

A computer program based on t h e  l inear ized  charac te r i s t ics  method w a s  
developed f o r  calculat ing the  supersonic port ion of the  flow of a perfect  gas 
over a r b i t r a r y  bodies of revolution a t  small yaw; a special izat ion of t he  
general approach resul ted,  a l so ,  i n  a program which gives the  f i r s t -o rde r  
e f f ec t s  of yaw f o r  pointed cones. First-order perturbation equations were 
derived i n  a form consistent with an ex is t ing  method of charac te r i s t ics  com- 
puter program f o r  t he  calculat ion of axisymmetric flows and the  per turbat ion 
equations were incorporated i n t o  t h i s  program. 
pute some example flows f o r  es tabl ishing the  accuracy and app l i cab i l i t y  of t he  
method. 

This program w a s  used t o  com- 

The r e s u l t s  from the  present method agreed with tabulated exact solutions 
fo r  cone flow. A l s o ,  solutions f o r  sphere-cone bodies tended t o  the  cone 
solution a t  a large distance from the  nose. A n  examination of t he  e f f ec t  of 
mesh s ize  on the  r e s u l t s  w a s  made t o  es tab l i sh  the numerical accuracy of the  
r e s u l t s .  Present solutions were then compared with published r e s u l t s  f o r  a 
10' sphere-cone which had been computed by bas ica l ly  the  same method. I n  
general t he  r e s u l t s  agreed, but some differences seemed grea te r  than possible 
numerical e r r o r s .  Some of t he  differences were a t t r i bu ted  t o  the  i n i t i a l  
values obtained from the  axisymmetric blunt-body solution f o r  a sphere. 

The app l i cab i l i t y  of t he  present method for  predict ing flows over bodies 
a t  f i n i t e  yaw angles w a s  assessed by comparison with experiment and, where 
possible,  with other theor ies .  For an ogive of fineness r a t i o  3 ,  the  r e s u l t s  
of t he  present method agreed with those from experiment and shock-expansion 
theory a t  yaw angles up t o  about 5 O .  
cones, the  present theory agreed w e l l  with experiment up t o  2' yaw fo r  t he  1-5' 
cone and up t o  5 O  yaw f o r  t h e  30' cone. E s t i m a t e s  based on cone-flow theor ies  
indicate  t h a t  fo r  f ixed yaw angle the  e r ror  i n  the  present l i nea r  approxima- 
t i o n  i s  least fo r  45' cones and increases fo r  larger  and smaller cone angles.  

For spherical ly  blunted 15' and 30' 



For slender pointed bodies, a p r a c t i c a l  rule which has been used, limits t h e  
present method t o  yaw angles less than t h e  half-angle of t h e  nose. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f  ., March 3, 1964 
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INTRINSIC FORM O F  THE EQUATIONS O F  MOTION OF A PERFECT 

GAS FOR THREE-DIMENSIONIL FLOW 

I n  development of t he  f i r s t -o rde r  perturbation equations it w a s  found 
convenient t o  begin with t h e  equations of motion wr i t ten  i n  terms of i n t r i n s i c  
coordinates, t h a t  i s ,  coordinates consisting of the streamline and two of i t s  
normals. The equations i n  t h i s  f o r m  are given i n  reference 16 f o r  axisymnet- 
r i c  flow. These a re  

The problem a t  hand i s  t o  derive the  analogous s e t  of equations which a re  
applicable t o  three-dimensional flow without a x i a l  symmetry. These w i l l  f o l -  
low from the  gas dynamics equation (i .e., combined momentum and cont inui ty  
equations) and the  momentum equation 

a2 d iv  - 'v . grad (q) = 0 

2 grad p + grad (G) + "v X c u r l  "v = 0 
P (A3 1 

F i r s t ,  however, it i s  necessary t o  define the  coordinate d i rec t ions .  

The-streamline d i rec t ion  i s  uniquely defined i n  t e r m s  of t he  ve loc i ty  
vector, V = 6, and f o r  two-di2ensional flow the  normal coordinate a l s o  i s  
uniquely defined i n  t e r m s  of V ( for  axisyrmnetric flow n i s  i n  t h e  meridi- 
onal plane (D = constant) .  However, i n  t h e  three-dimensional case there  are 
many possible normals t o  t h e  veloci ty  vector.  One such poss ib i l i t y ,  which i s  
not used here, i s  the  normal which l i e s  i n  the  osculating plane and i s  ca l l ed  
t h e  pr inc ipa l  normal t o  a curve. For t h e  present perturbation problem it w a s  
found convenient t o  choose t h e  normal Z which l i e s  i n  the  meridional plane 
( f i g .  1). 2 and 
n. These un i t  vectors may be expressed i n  terms of two ro ta t ion  angles by 
s t a r t i ng  w i t h  the xm, rm,  zm axes shown i n  figure 1. This i n i t i a l  system of 
axes i s  ro ta ted  by angle 8 about t he  Zm ax is ,  and the  resu l tan t  system i s  
ro ta ted  by angle cp about b; t he  angle 8 i s  ca l led  the  flow angle and cp 
t he  crossflow angle. If cp = 0, then s l i e s  i n  t h e  meridional plane and t h e  
normal 5 reduces t o  the  usual normal for  two-dimensional flow. With t h e  

4 

The second normal, <, i s  then uniquely defined i n  t e r m s  of 
> 
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help of f igure  1, these un i t  vectors may be e a s i l y  wr i t ten  i n  t e r m s  of 
components i n  the  Xm, r m ,  Zm d i rec t ions  ( i . e . ,  i n  t e r m s  of unit  vectors e,, 
er7 e@) * 

4 

A -  

A 

s = cos cp cos 0 Zx + cos cp s i n  e Sr + s i n  cp Go 

n = - s in  0 Gx + COS 0 Sr 

5 = - s i n  cp cos e Zx - s i n  0 s i n  cp Zr + cos cp 

A 

Attention i s  now-directed t o  the  equations of motion (A2) and ( A 3 ) .  
t h e  veloci ty  vector V i s  eliminated i n  favor of s,_ and the  dot product of 
equation (A3)  i s  taken f i rs t  with 2 and then with t ,  the  following equa- 
t i o n s  are obtained after some manipulation with vector i d e n t i t i e s  

When 

- p2 2 . grad p + div  2 = 0 
PV2 

L E .  g r a d p -  c u r l z = O  (A5C 1 
PV2 

These equations a re  t h e  general izat ion of the  i n t r i n s i c  equations (Al) t o  
general  three-dimensional flow. 
equations ( A l )  it i s  only necessary t o  expand the  d iv  and c u r l  operators 
using the  well-known vector formulas. To t h i s  end it i s  convenient t o  use 
equations (A4)  and expand i n  terms of cy l indr ica l  coordinates (note t h a t  

To express them i n  t h e  more familiar form of 

(l/r)(a/ao) = COS cp(a/at) + s i n  cp(a/as)). The r e s u l t  i s  

These equations can be simplified f o r  flows which deviate by only a s m a l l  
degree from axisymmetric flow. 
mations t o  the  crossflow angle, t he  following equations of motion a re  obtained 

Thus by making the  usual l inear iz ing  approxi- 
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Equations (A7)  are the  desired generalizations of equations ( A l ) ,  and are  used 
for t he  development of t he  f i r s t -o rde r  perturbation equations. 
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APPENDIX B 

EQUATIONS OF TRANSFORMATION FROM W I N D  TO BODY AXES 

I n  the  present development of t he  perturbation equations the  need arises 
t o  change from variables  expressed with respect t o  a wind-axis system t o  the  
corresponding var iables  expressed with respect t o  a body oriented system. The 
transformation equations giving t h i s  change are derived i n  t h i s  appendix f i rs t  
f o r  scalar ,  and then f o r  vector quant i t ies .  Consistent with the  present anal- 
y s i s  of t he  problem, these equations w i l l  give only t h e  f i r s t -o rde r  e f fec t  i n  
t e r m s  of a se r i e s  expansion of the  yaw angle. It i s  noted t h a t  such t rans-  
formations were discussed i n  references 6 and 7 (including second-order t e r m s )  
f o r  use with the  tabulated solutions fo r  cone flow, reference 5 .  

SCALAR QUANTITIES 

Consider any scalar  quantity a t  a point (x,y) expressed as S(x,y) i n  
wind-oriented coordinates and as S'  (x '  ,y'  ) i n  the  ro t a t ed  (body) coordinates. 

Y Y '  

A 

Sketch ( f )  

Suppose now t h a t  point A i n  sketch ( f )  
represents t he  loca t ion  of a probe t h a t  
i s  f ixed with respect t o  the  body a t  
zero yaw. 
by angle a ,  t h e  probe w i l l  move t o  
point B .  Since a sca la r  can have only 
one value a t  a point regardless of t he  
reference frame, t h a t  i s ,  since 

A f t e r  r o t a t ion  of the  body 

the  ro t a t ion  i s  equivalent t o  a t rans-  
l a t i o n  of t he  probe i n  the  or ig ina l  
reference frame. The desired t ransfor-  
mation must therefore  determine condi- 
t i ons  a t  point B i n  terms of known 
conditions a t  point A.  T h i s  i s  done 
by expanding S i n  a series about 
point A where it has t he  value 
s(xA,YA) - ~ h u s  

For s m a l l  ro ta t ions ,  the  prime coordinates a re  given by 
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I x1 = x - ay 

y '  = y + ax  

J z '  = z 

r '  = r + ax  cos 0 

Subst i tut ing equations (B3) i n t o  (B2) and using t h e  per turbat ion form 

S = So + asa 

yie lds  the  following equation which i s  va l id  t o  first order i n  a 

Equation (B4) s t a t e s  t h a t  the  perturbation quantity Sa' a t  point A i s  given 
i n  terms of the  value S, a t  point A, p lus  an addi t iona l  t e r m  proportional t o  
the  gradient of t he  axisymmetric f i e l d  S0(x,y).  

VECTOR QUA.N'J2ITIES 

In  developing the  ax i s  transforma- Y Y '  

t i o n  f o r  vector quant i t ies ,  t he  vectors 1 

are  f i rs t  expressed i n  terms of compo- 
nents along the  same s e t  of base vec- 
t o r s .  These components can then be Y 

transformed according t o  equation (B4) ,  
developed for sca la rs .  Consider t he  
veloci ty  vector with components u,v,w 
shown i n  sketch (g)  . The x '  , y l  , z '  a 

coordinate system i s  obtained by ro t a t -  
ing x,y,z zbout t h e  z ax i s .  The 
veloci ty  vector may be wr i t ten  i n  terms 
of components along wind and body axes 
as follows: 

Sketch (g)  
2 

V(x,r,0) = UT + (v cos 0 - w s i n  0 ) z  + (w cos 0 + v s i n  O)k (B%) 

and 

- t  v (xl,r~,~t) = u t i 1  + (vr cos 0'  - w '  s i n  (pl)T1 + (wt  cos 0'  + v' s i n  (~1)1;' 

(B5b)  
- 1  - 1  - t  2-4 

where i , j , k  a re  u n i t  vectors  along x,y,z axes and i ,j ,k a r e  along 
x '  ,y ' ,z ' axes. 



2 

The vector, V, can a l s o  be wr i t t en  i n  t e r m s  of components along t h e  primed 
axes i n  t h e  following manner. 

2 

V = AT' + B j l  + Cg' (B6) 

where 

For small ro t a t ions  the  sca l a r  products of t h e  unit  vectors  are given by 

1 -? 1 - 2 2 I -.. 
i . i  = j  . J  = k . g ' = l  

Equations (B5a)  and (B7) can be used t o  wr i te  t h e  components of equation (B6) 
i n  terms of unprimed var iab les :  

A = u + a(v cos 6, - w s i n  Q,) 

B = au + (v cos Q - w s i n  Q) I c = (w cos Q + v s i n  Q) 
3 

The condition t h a t  t he  vector V be independent of t he  coordinate system 

y ie lds ,  upon equating coe f f i c i en t s  of equations (B5b) and ( B 6 ) ,  t h ree  sca la r  
equations analogous t o  equation ( B l ) .  These a r e  

I u - a ( v  cos Q, - w s i n  Q) = u1  

(v cos Q, - w s i n  Q) + au  = (vl cos - w1 s i n  Q , ! )  

(w cos Q, + v s i n  @) = (w' cos Q,I + v 1  s i n  @ I )  

The angle Q 1  may be wr i t t en  i n  terms of Q, by means of t h e  usua l  expansions 
f o r  small ro t a t ions ,  equations ( B 3 ) ,  r e su l t i ng  i n  t h e  following r e l a t i o n s :  

(B12) 
X s i n  @ I  = s i n  Q - a s i n  Q cos Q, 



Now with equations (B11) and (B12) and the  perturbation expansions 

I u = uo + a u l  cos 4, 

v = vo + avl cos @ 

w = a w l  s i n  4, 

the  following f i r s t -o rde r  equations a re  obtained from equations (B10) 

u l 1 ( x f , r l )  = -vo(x,r)  + ul (x , r )  

v l l ( x f , r f )  = uo(x,r)  + v l ( x , r )  

w l l  ( X I  ,rl ) = -uo(x,r)  + $ vo(x,r)  + wl(x,r)  

Final ly ,  appl icat ion of equation (B4), which accounts for the  gradient of the  
axisymmetric f i e l d ,  y i e lds  the following transformations fo r  the  vector 
component s : 

au0 

0314) 

u i r ( x , r )  = -vo(x,r)  + u l ( x , r )  + y - ax - 

v l f ( x , r )  = uo(x , r )  + v l ( x , r )  + y - - x - 

w i f ( x , r )  = -uo(x,r)  + 

avo 
ax 

X 
vo(x , r )  + w1(x,r) 

The corresponding expressions for  angular var iables  may be obtained from 
equations (B14) and the  def in i t ions  

(SI5 1 
u1 = v1 COS eo - elvo s i n  eo 
w 1  = v0'P1 

with the r e su l t  

and 
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Figure 2.- Rotations defining the  per turbat ion angles.  
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